Sequential Anomaly Detection in Wireless Sensor Networks and Effects of Long Range Dependant Data

نویسندگان

  • Shanshan Zheng
  • John S. Baras
چکیده

Abstract: Anomaly detection is important for the correct functioning of wireless sensor networks. Recent studies have shown that node mobility along with spatial correlation of the monitored phenomenon in sensor networks can lead to observation data that have long range dependency, which could significantly increase the difficulty of anomaly detection. In this paper, we develop an anomaly detection scheme based on multi-scale analysis of the long range dependent traffic to address this challenge. In this proposed detection scheme, the discrete wavelet transform is used to approximately de-correlate the traffic data and capture data characteristics in different time scales. The remaining dependencies are then captured by a multi-level hidden Markov model in the wavelet domain. To estimate the model parameters, we develop an online discounting Expectation Maximization (EM) algorithm, which also tracks variations of the estimated models over time. Network anomalies are detected as abrupt changes in the tracked model variation scores. Statistical properties of our detection scheme are evaluated numerically using long range dependent time series. We also evaluate our detection scheme in malicious scenarios simulated using the NS-2 network simulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

Sequential Anomaly Detection in Wireless Sensor Networks and Effects of Long-Range Dependent Data

Anomaly detection is important for the correct functioning of wireless sensor networks. Recent studies have shown that node mobility along with spatial correlation of the monitored phenomenon in sensor networks can lead to observation data that have long range dependency, which could significantly increase the difficulty of anomaly detection. In this article, we develop an anomaly detection sch...

متن کامل

Evaluation of an Intrusion Detection System for Routing Attacks in Wireless Self-organised Networks

Wireless Sensor Networks (WSNs) arebecoming increasingly popular, and very useful in militaryapplications and environmental monitoring. However,security is a major challenge for WSNs because they areusually setup in unprotected environments. Our goal in thisstudy is to simulate an Intrusion Detection System (IDS)that monitors the WSN and report intrusions accurately andeffectively. We have thus...

متن کامل

Intrusion Detection in Wireless Sensor Networks using Genetic Algorithm

Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012